Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Neural Regen Res ; 19(9): 2057-2067, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38227536

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202409000-00039/figure1/v/2024-01-16T170235Z/r/image-tiff Parkinsonism by unilateral, intranigral ß-sitosterol ß-D-glucoside administration in rats is distinguished in that the α-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time, thus replicating several clinical features of Parkinson's disease, a typical α-synucleinopathy. As Nurr1 represses α-synuclein, we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateral ß-sitosterol ß-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection. This study found that rNurr1-V5 expression but not that of the green fluorescent protein (the negative control) reduced ß-sitosterol ß-D-glucoside-induced neuropathology. Accordingly, a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum. In addition, tyrosine hydroxylase-positive cells displayed less senescence marker ß-galactosidase and more neuron-cytoskeleton marker ßIII-tubulin and brain-derived neurotrophic factor. A significant decrease in activated microglia (positive to ionized calcium-binding adaptor molecule 1) and neurotoxic astrocytes (positive to glial fibrillary acidic protein and complement component 3) and increased neurotrophic astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10) also occurred in the substantia nigra. These effects followed the bilateral reduction in α-synuclein aggregates in the nigrostriatal system, improving sensorimotor behavior. Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration (senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells), neuroinflammation (activated microglia, neurotoxic astrocytes), α-synuclein aggregation, and sensorimotor deficits. Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect, supporting its potential clinical use in the treatment of Parkinson's disease.

2.
Biochem J ; 474(16): 2679-2689, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28666999

ABSTRACT

The mechanisms controlling degradation of cytosolic ß-catenin are important for regulating ß-catenin co-transcriptional activity. Loss of von Hippel-Lindau protein (pVHL) has been shown to stabilize ß-catenin, increasing ß-catenin transactivation and ß-catenin-mediated cell proliferation. However, the role of phosphoinositide 3-kinase (PI3K)/Akt in the regulation of ß-catenin signaling downstream from pVHL has never been addressed. Here, we report that hyperactivation of PI3K/Akt in cells lacking pVHL contributes to the stabilization and nuclear accumulation of active ß-catenin. PI3K/Akt hyperactivation is facilitated by the up-regulation of 14-3-3ζ and the down-regulation of 14-3-3ε, 14-3-3η and 14-3-3θ. Up-regulation of 14-3-3ζ in response to pVHL is important for the recruitment of PI3K to the cell membrane and for stabilization of soluble ß-catenin. In contrast, 14-3-3ε and 14-3-3η enhanced PI3K/Akt signaling by inhibiting PI3K and PDK1, respectively. Thus, our results demonstrated that 14-3-3 family members enhance PI3K/Akt/ß-catenin signaling in order to increase proliferation. Inhibition of Akt activation and/or 14-3-3 function strongly reduces ß-catenin signaling and decreases cell proliferation. Thus, inhibition of Akt and 14-3-3 function efficiently reduces cell proliferation in 786-0 cells characterized by hyperactivation of ß-catenin signaling due to pVHL loss.


Subject(s)
14-3-3 Proteins/biosynthesis , Cell Proliferation/physiology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/physiology , Up-Regulation/physiology , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , beta Catenin/metabolism , 14-3-3 Proteins/genetics , Animals , Dogs , Humans , Madin Darby Canine Kidney Cells , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , beta Catenin/genetics
3.
Rev Invest Clin ; 54(1): 57-67, 2002.
Article in Spanish | MEDLINE | ID: mdl-11995408

ABSTRACT

Gene therapy is a new modality of treatment in which a gene is used to modify or add new biochemical properties to a patient's target cells with therapeutics purposes. Currently, this experimental therapy is under intensive development as an alternative to treat cancer, because it is possible that this therapy may generate a higher antineoplastic activity, more tissue selectivity and less contralateral effects than conventional therapy. After a decade of preclinical and clinical assays, still there are several obstacles that impose limits to the antineoplastic efficacy of this therapy. However, with the advances in molecular biology and related fields, there is a promise to improve, expand and strength the powerful antineoplastic arsenal of gene therapy.


Subject(s)
Genetic Therapy , Neoplasms/therapy , Clinical Trials as Topic , Genetic Vectors , Humans , Immunotherapy , Neoplasms/genetics , Transduction, Genetic
4.
Rev. invest. clín ; 54(1): 57-67, 2002 Jan-Feb.
Article in Spanish | LILACS | ID: lil-332947

ABSTRACT

Gene therapy is a new modality of treatment in which a gene is used to modify or add new biochemical properties to a patient's target cells with therapeutics purposes. Currently, this experimental therapy is under intensive development as an alternative to treat cancer, because it is possible that this therapy may generate a higher antineoplastic activity, more tissue selectivity and less contralateral effects than conventional therapy. After a decade of preclinical and clinical assays, still there are several obstacles that impose limits to the antineoplastic efficacy of this therapy. However, with the advances in molecular biology and related fields, there is a promise to improve, expand and strength the powerful antineoplastic arsenal of gene therapy.


Subject(s)
Humans , Neoplasms , Genetic Therapy , Clinical Trials as Topic , Immunotherapy , Neoplasms , Transduction, Genetic , Genetic Vectors
SELECTION OF CITATIONS
SEARCH DETAIL
...